Exploring Q-Learning Optimization in Traffic Signal Timing Plan Management
dc.contributor.author | Yit, Kwong Chin | |
dc.contributor.author | Lai, Kuan Lee | |
dc.contributor.author | Nurmin Bolong | |
dc.contributor.author | Soo, Siang Yang | |
dc.contributor.author | Tze, Kin Teo (Kenneth) | |
dc.date.accessioned | 2023-06-06T03:28:09Z | |
dc.date.available | 2023-06-06T03:28:09Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Traffic congestions often occur within the entire traffic network of the urban areas due to the increasing of traffic demands by the outnumbered vehicles on road. The problem may be solved by a good traffic signal timing plan, but unfortunately most of the timing plans available currently are not fully optimized based on the on spot traffic conditions. The incapability of the traffic intersections to learn from their past experiences has cost them the lack of ability to adapt into the dynamic changes of the traffic flow. The proposed Qlearning approach can manage the traffic signal timing plan more effectively via optimization of the traffic flows. Qlearning gains rewards from its past experiences including its future actions to learn from its experience and determine the best possible actions. The proposed learning algorithm shows a good valuable performance that able to improve the traffic signal timing plan for the dynamic traffic flows within a traffic network. | |
dc.identifier.uri | https://digitallibrary.peninsulacollege.edu.my/handle/123456789/326 | |
dc.language.iso | en | |
dc.title | Exploring Q-Learning Optimization in Traffic Signal Timing Plan Management | |
dc.type | Article |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Chin Yit Kwong - Exploring Q-Learning Optimization in Traffic Signal Timing Plan Management.pdf
- Size:
- 313.15 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 738 B
- Format:
- Item-specific license agreed to upon submission
- Description: